Skip to main content

الانحدار الحركة من المتوسط المصدر رمز


تحليل سلسلة الوقت تسا statsmodels. tsa يحتوي على فئات نموذج والوظائف التي هي مفيدة لتحليل سلسلة زمنية. ويشمل هذا حاليا نماذج الانحدار الذاتي المتحد أحادي المتغير (أر) ونماذج الانحدار الذاتي المتجه (فار) ونماذج المتوسط ​​المتحرك المتحد الانحدار الذاتي (أرما). ويتضمن أيضا إحصاءات وصفية للسلاسل الزمنية، على سبيل المثال الارتباط الذاتي، وظيفة الارتباط الذاتي الجزئي و بيريودوغرام، فضلا عن الخصائص النظرية المقابلة من أرما أو العمليات ذات الصلة. ويشمل أيضا أساليب للعمل مع الانحدار الذاتي والانتقال المتوسط ​​متخلفة متعدد الحدود. بالإضافة إلى ذلك، الاختبارات الإحصائية ذات الصلة وبعض وظائف المساعد مفيدة المتاحة. يتم تقدير إما عن طريق دقيقة أو مشروطة الحد الأقصى المحتمل أو المشروط مربعات أقل، إما باستخدام كالمان تصفية أو مرشحات مباشرة. حاليا، يجب أن يتم استيراد الوظائف والطبقات من الوحدة المقابلة، ولكن سيتم توفير الفئات الرئيسية في مساحة الاسم statsmodels. tsa. هيكل الوحدة هو ضمن statsmodels. tsa هو ستاتتولس. الخصائص التجريبية والاختبارات، أسف، باسف، غرانجر السببية، أدف وحدة اختبار الجذر، يجونغ مربع اختبار وغيرها. armodel. عملية الانحدار الذاتي أحادي المتغير، تقدير مع احتمال أقصى المشروط والدقيق والمشروط المربعات الصغرى أريماموديل. عملية أرما أحادية المتغير، تقدير مع الاحتمال الأقصى المشروط والحقيقي الدقيق وناقلات المربعات الصغرى المشروطة، فار. (فار)، وتحليل الاستجابة النبضية، والتحلل في تباين أخطاء التنبؤ، وأدوات تصور البيانات كالمانف. وفئات تقدير ل أرما ونماذج أخرى مع مل الدقيق باستخدام كلمان تصفية أرمابروسيس. خصائص عمليات أرما مع معلمات معينة، وهذا يشمل أدوات للتحويل بين تمثيل أرما و ما و أر وكذلك أسف و باسف وكثافة طيفية ودالة استجابة النبضة و sandbox. tsa. fftarma مماثلة. على غرار أرمابروسيس ولكن تعمل في مجال الترددات تساتولس. وظائف المساعد إضافية، لإنشاء صفائف من المتغيرات المتخلفة، بناء ريجريسورس للاتجاه، ديتريند وما شابه ذلك. المرشحات. وظيفة المساعد لتصفية السلاسل الزمنية بعض الوظائف الإضافية التي هي مفيدة أيضا لتحليل سلسلة زمنية هي في أجزاء أخرى من ستاتسموديلز، على سبيل المثال اختبارات إحصائية إضافية. بعض الوظائف ذات الصلة وتتوفر أيضا في ماتلوتليب، نيتيمي، و scikits. talkbox. وقد صممت هذه الوظائف أكثر من أجل استخدامها في معالجة الإشارات حيث تتوفر سلاسل زمنية أطول وتعمل في كثير من الأحيان في مجال الترددات. الإحصاء الوصفي والاختبارات stattools. acovf (x، غير متحيز، ديميان، ففت) سبرين، أسواق رأس المال التنبؤات مع الشبكات العصبية. سبرين، وأفضل أداة التنبؤ على أساس تقنيات الذكاء الاصطناعي (الشبكات العصبية الاصطناعية)، يمنحك دقيقة مفتوحة، وعقد وإغلاق توصيات لاستثماراتك في أسواق رأس المال. تتوفر كل من العمليات الطويلة والقصيرة. سبرين يتيح لك تحديد مخاطر العمليات الخاصة بك، والعمولات، وتأثير مؤشرات التحليل الفني (المتوسط ​​المتحرك تيتشارت ل جافا هو مكتبة مكونة من مخططات جافا واسعة النطاق استنادا إلى أكثر من عقود من الخبرة في العمل مع متطلبات الرسم البياني العملاء هو ويمكن استخدامها في جميع برامج جافا القياسية، ولم أكن قادرا على الحصول على قمم من البيانات التي تم الحصول عليها تجريبيا بسبب طبيعتها العشوائية، ونتيجة لذلك فإن فيندبياكس () المعرفة في مكتبة ماتلاب لم تعطي النتائج كما هو متوقع، ومن ثم لقد قمت بوضع رمز يساعد في البحث عن المساعدة، ولكن بناء نظام تداول آلي بدائي ومنمق يديره جهاز توقيت ثابت ومناولة استرجاع البيانات وتخزينها وتحليلها، وهي استراتيجية ترشد إلى إعادة توازن المحفظة في كل تكرار، يتم عرضها في أكتيفكس مكتبة مكونات الرسم البياني يقدم أكثر من 60 أنماط الرسم البياني و 56 وظائف رياضية وإحصائية، ومجموعة كاملة من أدوات الرسم البياني المشارك مكونات للحصول على وظائف إضافية. يتضمن 32 بت أمبير 64 بت الإصدارات. ويندوز والويب. يظهر رمز حقل النجمة المتحركة حقل نجمة متحرك في إطار يمكن تغيير حجمه. يتم كتابة التعليمات البرمجية في معيار C باستخدام أبي Win32. يحسب متوسط ​​ودي عن طريق محاذاة الإشارات الفردية أولا (تالف من الارتعاش) مع المتوسط ​​القياسي. يستخدم زكور لحساب الفارق الزمني ثم إعادة متوسط ​​الإشارات للحصول على تقدير محسن. المثال الذي يتم تضمينه في التعليمات. هذا الرمز يقوم بمحاذاة السلاسل الزمنية مع نماذج الانحدار الذاتي المتكاملة المتكاملة (أرفيما) التي تقوم بتعميم أريما (المتوسط ​​المتحرك المتكامل الانحداري الذاتي) ونماذج المتوسط ​​المتحرك للانحدار الذاتي أرما. نماذج أرفيما تسمح القيم غير صحيح للمعلمة ديفيرنسينغ ومفيدة في النمذجة السلاسل الزمنية مع ذاكرة طويلة. يحاكي الرمز عموما نموذج أرفيما (p، d، q) حيث d هو الاختلاف. وتحسب المتوسط ​​المتحرك تيلسون. المستخدم قادرا على تغيير المعلمات مثل الاحتلالات تجانس وعامل حجم تنفيذ نقل المتوسط ​​مرشح. ويعمل مرشاح المتوسط ​​المتحرك بمتوسط ​​عدد من النقاط من إشارة الدخل لإنتاج كل نقطة في إشارة الخرج. في شكل معادلة، يتم كتابة هذا: يحتوي هذا الملف على ثلاثة ملفات م التي تقدر القيمة المعرضة للخطر للمحفظة المكونة من سعرين للأسهم باستخدام المتوسط ​​المتحرك الموزون أضعافا مضاعفة. وتتمثل المهمة الرئيسية إومستيماتيفار. لتقدير القيمة المعرضة للخطر يجب عليك استخدام هذا. كفاءة عالية تصفية المتوسط ​​المتحرك تنفيذها باستخدام التلازم. سموثد داتا موفاف (ناقلات البيانات، متوسط ​​حجم النافذة في العينات) انظر أيضا: slidefilter. m من قبل نفس المؤلف نقل متوسط ​​تصفية تنفيذها باستخدام تقنية سوتسكوت كوتسليدينغ. كفاءة نسبيا. سليدفيلتر البيانات (متغير البيانات، انزلاق الفاصل الزمني في العينات) انظر أيضا: movave. m تشيافلوكبلوت A الحرة عالية منخفضة-فتح-إغلاق (والحجم والمتوسط ​​المتحرك) مؤامرة للإجابة على موضوع سم (كوتسوبجيكت: على استخدام ماتلاب إلى مؤامرة مخزون الأسهم). تنفيذ متوسط ​​متحرك باستخدام فلتر البناء، وهو سريع جدا. بالنسبة للنواقل، يحسب Y رونمان (X، M) متوسط ​​الجري (المعروف أيضا بالمتوسط ​​المتحرك) على عناصر المتجه X. ويستخدم نافذة من داتابوانتس 2M1. M عدد صحيح موجب يحدد (نصف) حجم النافذة. في الكود الزائف: Y (i). وتحسب هذه الشفرة الانحراف المعياري المتوسط ​​المرجح ألسيا. المتوسط ​​المتحرك المتوسط ​​المرجح (إوما) ينطبق الانحراف المعياري للأوزان المختلفة على عوائد مختلفة. أكثر عوائد الأخيرة لها وزن أكبر على. من حيث السلوك، وهذا هو بديل لتصفية () لنواة متحرك متوسط، إلا أنه أسرع. لا تعتمد السرعة على طول المرشح. يستخدم رمز البديل من كومسوم-خدعة، وإن لم يكن كوتغاردن. يوفر فار بسيطة حاسبة: - تقييم توزيع العودة من أصل واحد أو محفظة من الأصول - توقعات التقلب باستخدام المتوسط ​​المتحرك والخوارزمية الأسية - القيمة المعرضة للخطر من أصل واحد. يقوم هذا الملف m بتنفيذ نظام متوسط ​​متحرك M-بوينت. والمعادلة هي: y (n) (x (n) x (n-1) x (n-M)) M M هو ترتيب نظام المتوسط ​​المتحرك M-بوينت. بناء الجملة: يمبوانتافيراج (المدخلات، النظام) الوسيطة. وتحسب هذه الدالة في مواقع (إكسي و يي) غير معروفة إيدو (wlt0) أو التنبؤات سما (w0) باستخدام نمط حي r1 (n: عدد النقاط r: نصف قطرها) وحجم حي r2 من القيم المقاسة فك (شك، يك ). تعليمات: 1. إعطاء رمز من الأسهم. 2. إعطاء تاريخ اليوم في شكل محدد (أشهر أيام في السنة). 3. الحصول على بيانات زر جلب البيانات من خادم ياهو. 4. اختر عدد الأيام التي تريد فحصها. 5. الهدف من هذه الدراسة هو إظهار كيف يمكن استخدام ماتلاب وأدوات مختلفة معا لحل مشكلة التصوير. المشكلة المحددة المعروضة هنا هي تجربة علمية. نظرا البندول، قياس الجاذبية. والرياضيات محددة جيدا. الاتجاهات لتشغيل الملف. 1. بفك الملف cutTradingStrat. zipquot بحيث ستحصل على مجلد كوترادينغستراتكوت. 2. تعيين دليل العمل الخاص بك كما كوترادينغسترات غ كسفكوت (المجلد كسف يحمل الفاصلة فاسترمز لحظة الجذر متوسط ​​مربع (رمز) السلطة عن طريق التفاف فاسترمز (X)، عندما X هو متجه، هو الوقت رمز متغير السلطة من X محسوبة باستخدام نافذة مستطيلة مكونة من 5 نقاط تتمركز في كل نقطة في الإشارة. المخرجات هي هذه الملفات وبعض البيانات التي استخدمتها في ندوة الويب الأخيرة الخاصة بي على التداول الخوارزمي وقد تم تقصير البيانات للحجم وتشمل: ماريسا أقرب نموذج جار نموذج زائدة لوقف الخسارة مثال توضيحي للمؤشرات هي أداة التحليل الفني التي تحسب المؤشرات الفنية المختلفة التحليل الفني هو التنبؤ بحركات الأسعار المالية المستقبلية استنادا إلى فحص تحركات الأسعار الماضية، ومعظمها كوبيرايت 2000-2015 كود المصدر أونلين كود المصدر المجاني و سكريبتس دونلوادس جميع الملفات و التنزيلات المجانية هي حقوق الطبع والنشر لأصحابها، ونحن لا نقدم أي اختراق، متصدع ، غير قانوني، نسخة المقرصنة من البرامج النصية، رموز، مكونات التنزيلات. يتم تنزيل جميع الملفات من موقع الناشرين أو خوادم الملفات أو مرايا التنزيل. دائما ملفات فحص الفيروسات التي تم تحميلها من الويب خاصة الرمز البريدي، رار، إكس، محاكمة، إصدارات كاملة الخ تحميل الروابط من رابيدشار، وديعة، ميغاوبلواد الخ لم تنشر. عمليات الانتحار المتوسط ​​المتوسط ​​الخطأ (أخطاء أرما) ونماذج أخرى تنطوي على تأخر يمكن تقدير عبارات الخطأ باستخدام عبارات فيت والمحاكاة أو التنبؤ باستخدام عبارات سولف. وغالبا ما تستخدم نماذج أرما لعملية الخطأ للنماذج ذات المخلفات ذات الصلة. يمكن استخدام الماكرو أر لتحديد نماذج مع عمليات خطأ الانحدار الذاتي. يمكن استخدام ماكرو ما لتحديد النماذج مع عمليات الخطأ المتوسط ​​المتوسط. أخطاء الانحدار الذاتي نموذج يحتوي على أخطاء الانحدار الذاتي من الدرجة الأولى، أر (1)، لديه النموذج أثناء عملية خطأ أر (2) يحتوي على النموذج وهكذا دواليك لعمليات أعلى ترتيب. لاحظ أن s مستقلة وموزعة بشكل متطابق ولها قيمة متوقعة من 0. مثال على نموذج مع عنصر أر (2) هو وهكذا دواليك لعمليات أعلى ترتيب. على سبيل المثال، يمكنك كتابة نموذج الانحدار الخطي بسيط مع ما (2) المتوسط ​​المتحرك الأخطاء حيث حيث MA1 و MA2 هي المعلمات المتوسط ​​المتحرك. لاحظ أن RESID. Y يتم تعريفها تلقائيا بواسطة بروك موديل كما يجب استخدام الدالة زلاغ لمناذج ما لاقتطاع عودة العطل. ويضمن ذلك أن تبدأ الأخطاء المتأخرة عند الصفر في طور التأخر ولا تنشر القيم الناقصة عندما تكون متغيرات فترة التأخر مفقودة، وتضمن أن تكون الأخطاء المستقبلية صفرا وليس مفقودة أثناء المحاكاة أو التنبؤ. للحصول على تفاصيل حول وظائف التأخر، راجع القسم لاغ لوجيك. هذا النموذج المكتوب باستخدام ماكرو ما هو كما يلي: النموذج العام لنماذج أرما العملية أرما (p، q) العامة لها النموذج التالي يمكن تحديد نموذج أرما (p، q) كما يلي: حيث أر i و ما j تمثل ومعدلات الانحدار الذاتي والمتوسط ​​المتحرك لمختلف الفواصل الزمنية. يمكنك استخدام أي أسماء تريدها لهذه المتغيرات، وهناك العديد من الطرق المكافئة التي يمكن أن تكون مكتوبة المواصفات. ويمكن أيضا أن يتم تقدير العمليات أرما ناقلات مع بروك نموذج. على سبيل المثال، يمكن تحديد عملية أر (1) ثنائية المتغير لأخطاء المتغيرين الداخليين Y1 و Y2 على النحو التالي: مشكلات التقارب مع نماذج أرما يمكن أن يكون من الصعب تقدير نماذج أرما. إذا لم تكن تقديرات المعلمة ضمن النطاق المناسب، تنمو النماذج المتبقية للمتوسط ​​المتحرك بشكل مطرد. ويمكن أن تكون المخلفات المحسوبة للملاحظات اللاحقة كبيرة جدا أو يمكن تجاوزها. ويمكن أن يحدث ذلك إما بسبب استخدام قيم بدء غير ملائمة أو بسبب تكرارات التكرارات بعيدا عن القيم المعقولة. يجب استخدام العناية في اختيار قيم البدء لمعلمات أرما. وتبدأ قيم البداية التي تبلغ 0.001 بالنسبة إلى معلمات أرما إذا كان النموذج يتلاءم مع البيانات جيدا وأن المشكلة مكيفة جيدا. لاحظ أن نموذج ما يمكن في كثير من الأحيان تقريب من قبل نموذج أر عالية الترتيب، والعكس بالعكس. وهذا يمكن أن يؤدي إلى علاقة خطية متداخلة عالية في نماذج أرما مختلطة، والتي بدورها يمكن أن يسبب سوء تكييف خطيرة في الحسابات وعدم استقرار تقديرات المعلمة. إذا كان لديك مشاكل التقارب أثناء تقدير نموذج مع عمليات خطأ أرما، في محاولة لتقدير في الخطوات. أولا، استخدم بيان فيت لتقدير فقط المعلمات الهيكلية مع المعلمات أرما التي عقدت إلى الصفر (أو إلى تقديرات معقولة معقولة إن وجدت). بعد ذلك، استخدم عبارة فيت أخرى لتقدير معلمات أرما فقط، باستخدام قيم المعلمات الهيكلية من التشغيل الأول. وبما أن قيم المعلمات الهيكلية من المرجح أن تكون قريبة من تقديراتها النهائية، فإن تقديرات المعلمة أرما قد تتلاقى الآن. وأخيرا، استخدم بيان فيت آخر لإنتاج تقديرات متزامنة لجميع المعلمات. وبما أن القيم الأولية للمعلمات من المرجح أن تكون قريبة جدا من تقديراتها النهائية المشتركة، ينبغي أن تتلاقى التقديرات بسرعة إذا كان النموذج مناسبا للبيانات. الشروط المبدئية أر يمكن وضع الفواصل الأولية لشروط الخطأ في نماذج أر (p) بطرق مختلفة. طرق بدء تشغيل خطأ الانحدار الذاتي التي تدعمها إجراءات ساسيتس هي التالية: المربعات الصغرى المشروطة (إجراءات أريما و موديل) المربعات الصغرى غير المشروطة (أوتوريغ، أريما، وإجراءات موديل) أقصى احتمالات (أوتوريغ، أريما، وإجراءات موديل) يول ووكر (أوتوريغ الإجراء الوحيد) هيلدريث-لو، الذي يحذف أول ملاحظات p (إجراء نموذج فقط) انظر الفصل 8، الإجراء أوتوريغ، للحصول على شرح ومناقشة مزايا مختلف أساليب بدء التشغيل أر (p). يمكن إجراء كلس، أولس، مل، و أوليتيزاتيونس من قبل بروك نموذج. بالنسبة إلى أخطاء أر (1)، يمكن إنتاج هذه التهيئة كما هو مبين في الجدول 18.2. هذه الطرق تعادل في عينات كبيرة. الجدول 18.2 التهيئة التي يتم إجراؤها بواسطة بروك النموذجي: أر (1) الأخطاء يمكن أيضا أن تكون الفواصل الأولية لشروط الخطأ في نماذج ما (q) نموذجا بطرق مختلفة. يتم دعم نماذج بدء خطأ المتوسط ​​المتوسط ​​التالية من خلال إجراءات أريما و موديل: مربعات أقل مشروطة المربعات الصغرى الشرطية طريقة المربعات الصغرى الشرطية لتقدير عبارات الخطأ المتوسط ​​المتوسط ​​ليست الأمثل لأنه يتجاهل مشكلة بدء التشغيل. وهذا يقلل من كفاءة التقديرات، على الرغم من أنها تظل غير متحيزة. ويفترض أن المخلفات الأولية المتأخرة، التي تمتد قبل بدء البيانات، هي صفر، قيمتها المتوقعة غير المشروطة. ويحدث هذا فرقا بين هذه البقايا ومتبقي المربعات الصغرى المعمم في التباين المتوسط ​​المتحرك، الذي يستمر، خلافا لنموذج الانحدار الذاتي، من خلال مجموعة البيانات. وعادة ما يتقارب هذا الاختلاف بسرعة إلى 0، ولكن بالنسبة لعمليات المتوسط ​​المتحرك غير القابلة للتحويل تقريبا فإن التقارب بطيء جدا. لتقليل هذه المشكلة، يجب أن يكون لديك الكثير من البيانات، ويجب أن تكون تقديرات معامل المتوسط ​​المتحرك ضمن النطاق القابل للانعكاس. ويمكن تصحيح هذه المشكلة على حساب كتابة برنامج أكثر تعقيدا. ويمكن إنتاج تقديرات المربعات الصغرى غير المشروطة لعملية ما (1) من خلال تحديد النموذج على النحو التالي: يمكن أن يكون من الصعب تقدير المتوسط ​​المتحرك للأخطاء. يجب أن تفكر في استخدام تقريب أر (p) لعملية المتوسط ​​المتحرك. ويمكن عادة أن تكون عملية المتوسط ​​المتحرك مقاربة بشكل جيد من خلال عملية الانحدار الذاتي إذا لم يتم تمهيد أو اختلاف البيانات. الماكرو أر أر ساس الماكرو أر يولد بيانات البرمجة ل بروك موديل لنماذج الانحدار الذاتي. الماكرو أر هو جزء من برنامج ساسيتس، ولا حاجة إلى تعيين خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الانحدار الذاتي على أخطاء المعادلة الهيكلية أو إلى سلسلة الذاتية نفسها. يمكن استخدام الماكرو أر للأنواع التالية من الانحدار الذاتي: الانحدار الذاتي غير المقيد الانحدار الذاتي المتجه المقيد الانحدار الذاتي المتغير ونيفاريت لرسم نموذج الخطأ في المعادلة كعملية الانحدار الذاتي، استخدم العبارة التالية بعد المعادلة: على سبيل المثال، لنفترض أن Y هو الدالة الخطية ل X1 و X2 و أر (2). يمكنك كتابة هذا النموذج على النحو التالي: يجب أن تأتي المكالمات إلى أر بعد كل المعادلات التي تنطبق عليها العملية. ويؤدي الاستدعاء الكلي السابق، أر (y، 2)، إلى عرض البيانات المبينة في خرج ليست في الشكل 18.58. الشكل 18.58 ليست خیار الخیار لنموذج أر (2) متغیرات أر مسبقة الصیانة ھي متغیرات برنامجیة مؤقتة مستخدمة بحیث تکون تأخیرات البقایا ھي البقایا الصحیحة ولیس تلك التي تم إعادة تعریفھا بواسطة ھذه المعادلة. لاحظ أن هذا يعادل البيانات المكتوبة بشكل صريح في المقطع نموذج عام لنماذج أرما. يمكنك أيضا تقييد المعلمات الانحدار الذاتي إلى صفر عند التأخر المحدد. على سبيل المثال، إذا أردت معلمات الانحدار الذاتي عند الفترات الزمنية 1 و 12 و 13، يمكنك استخدام العبارات التالية: تولد هذه العبارات الإخراج الموضح في الشكل 18.59. الشكل 18.59 ليست مخرجات الخيار لنموذج أر مع تأخيرات في 1 و 12 و 13 قائمة إجراءات نموذج قائمة برمجية البرمجة البرمجية المجمعة كما تم تحليلها PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y بريد. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - بيردي) yl12 ZLAG12 (y - بيردي) yl13 ZLAG13 (y - بيردي) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y هناك الاختلافات على طريقة المربعات الصغرى المشروطة، اعتمادا على ما إذا كانت الملاحظات في بداية السلسلة تستخدم لتسخين عملية أر. وبشكل افتراضي، تستخدم طريقة المربعات الصغرى المشروطة أر جميع الملاحظات وتفترض الأصفار للتخلف الأولي لشروط الانحدار الذاتي. باستخدام الخيار M، يمكنك طلب أن أر استخدام المربعات الصغرى غير المشروطة (أولس) أو أقصى احتمال (مل) طريقة بدلا من ذلك. على سبيل المثال، يتم عرض مناقشات هذه الطرق في القسم أر الشروط الأولية. وباستخدام الخيار مكلس n، يمكنك طلب استخدام أول ملاحظات n لحساب تقديرات الفترات الزمنية الأولية للانحراف الذاتي. في هذه الحالة، يبدأ التحليل بالملاحظة n 1. على سبيل المثال: يمكنك استخدام الماكرو أر لتطبيق نموذج الانحدار الذاتي على المتغير الداخلي، بدلا من مصطلح الخطأ، وذلك باستخدام الخيار تيبيف. على سبيل المثال، إذا كنت ترغب في إضافة الفواصل الخمسة الماضية من Y إلى المعادلة في المثال السابق، يمكنك استخدام أر لإنشاء المعلمات والتخلف باستخدام العبارات التالية: البيانات السابقة توليد الإخراج هو مبين في الشكل 18.60. الشكل 18.60 ليست خرج الخوارزمية لنموذج أر من Y يتنبأ هذا النموذج Y بمزيج خطي من X1 و X2 و اعتراض وقيم Y في أحدث خمس فترات. استخلاص الانحدار غير المقيد للناقلات لنموذج مصطلحات الخطأ لمجموعة من المعادلات كعملية متجه الانحدار الذاتي، استخدم النموذج التالي من ماكرو أر بعد المعادلات: قيمة اسم العملية هي أي اسم تقدمه أر لاستخدامه في صنع أسماء الانحدار الذاتي المعلمات. يمكنك استخدام ماكرو أر لنموذج عدة عمليات أر مختلفة لمجموعات مختلفة من المعادلات باستخدام أسماء عملية مختلفة لكل مجموعة. يضمن اسم العملية أن أسماء المتغيرات المستخدمة فريدة. استخدم قيمة اسم عملية قصيرة للعملية إذا كانت تقديرات المعامل ستكتب إلى مجموعة بيانات الإخراج. يحاول الماكرو أر إنشاء أسماء معلمات أقل من أو يساوي ثمانية أحرف، ولكن هذا يقتصر طول العملية. والذي يستخدم كبادئة لأسماء معلمات أر. القيمة فاريابلليست هي قائمة المتغيرات الذاتية للمعادلات. على سبيل المثال، لنفترض أن أخطاء المعادلات Y1 و Y2 و Y3 يتم إنشاؤها بواسطة عملية الانحدار الذاتي للناقلات من الدرجة الثانية. يمكنك استخدام العبارات التالية: التي تولد التالية ل Y1 و التعليمات البرمجية مشابهة ل Y2 و Y3: يمكن استخدام الأسلوب المربعات الصغرى الشرطية (مكلس أو مكلس n) لعمليات المتجه. يمكنك أيضا استخدام نفس النموذج مع القيود التي مصفوفة معامل تكون 0 في التأخر المحدد. على سبيل المثال، تنطبق العبارات التالية عملية متجه من الدرجة الثالثة على أخطاء المعادلة مع كل المعاملات عند التأخر 2 المقيدة إلى 0 ومع المعاملات عند الفواصل الزمنية 1 و 3 غير المقيدة: يمكنك نموذج السلسلة الثلاثية Y1Y3 باعتبارها عملية الانحدار الذاتي المتجه في المتغيرات بدلا من الأخطاء باستخدام الخيار تيبيف. إذا كنت ترغب في نموذج Y1Y3 كدالة للقيم الماضية من Y1Y3 وبعض المتغيرات الخارجية أو الثوابت، يمكنك استخدام أر لتوليد البيانات لفترات التأخر. اكتب معادلة لكل متغير للجزء نونوتريغريسيف من النموذج ثم قم باستدعاء أر مع الخيار تيبيف. على سبيل المثال، يمكن أن يكون الجزء غير التخريطي للنموذج دالة للمتغيرات الخارجية، أو يمكن أن يكون معلمات اعتراض. إذا لم تكن هناك مكونات خارجية لنموذج الانحدار الذاتي للناقل، بما في ذلك عدم وجود اعتراضات، ثم قم بتعيين صفر لكل من المتغيرات. يجب أن يكون هناك تخصيص لكل من المتغيرات قبل أن يسمى أر. ويوضح هذا المثال المتجه Y (Y1 Y2 Y3) كدالة خطية فقط لقيمته في الفترتين السابقتين ومجهز خطأ ضوضاء أبيض. يحتوي النموذج على 18 (3 3 3 3) معلمات. بناء الجملة من ماكرو أر هناك حالتان من بناء الجملة لل ماكرو أر. عندما لا تكون هناك حاجة إلى قيود على عملية أر ناقلات، وبناء الجملة ماكرو أر الشكل العام يحدد بادئة أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتحديد عملية أر. إذا لم يتم تحديد إندوليست، فإن القائمة الذاتية افتراضيا للاسم. والتي يجب أن تكون اسم المعادلة التي سيتم تطبيق عملية خطأ أر. لا يمكن أن تتجاوز قيمة الاسم 32 حرفا. هو ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. إذا تم إعطاء أكثر من اسم واحد، يتم إنشاء عملية ناقلات غير مقيدة مع المخلفات الهيكلية من جميع المعادلات المدرجة على النحو المتراجعون في كل من المعادلات. إذا لم يتم تحديدها، افتراضيات إندوليست الاسم. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات في فترات التأخر غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة. ولا تدعم طرائق أر و نواقل أر من قبل أر. يحدد أن عملية أر يتم تطبيقها على المتغيرات الذاتية نفسها بدلا من المخلفات الهيكلية للمعادلات. تقييد الانتكاس التلقائي المقيد يمكنك التحكم في المعاملات التي يتم تضمينها في العملية، مع تقييد 0 تلك المعلمات التي لا تتضمنها. أولا، استخدم أر مع الخيار ديفر لإعلان قائمة المتغيرات وتحديد بعد العملية. ثم، استخدام المكالمات أر إضافية لتوليد مصطلحات للمعادلات المحددة مع المتغيرات المحددة في التأخر المحدد. وعلى سبيل المثال، فإن معادلات الخطأ المنتجة هي كما يلي: يشير هذا النموذج إلى أن أخطاء Y1 تعتمد على أخطاء كل من Y1 و Y2 (ولكن ليس Y3) عند كل من الفارقين 1 و 2، وأن الأخطاء في Y2 و Y3 تعتمد على الأخطاء السابقة لجميع المتغيرات الثلاثة، ولكن فقط في تأخر 1. أر بناء الجملة ماكرو للمتجهات المقيدة أر يسمح استخدام بديل من أر لفرض قيود على عملية أر المتجه عن طريق استدعاء أر عدة مرات لتحديد مصطلحات أر مختلفة والتخلف لمختلف المعادلات. المكالمة الأولى لها النموذج العام يحدد البادئة ل أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية أر المتجهات. يحدد ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. يحدد أن أر ليس لتوليد عملية أر ولكن الانتظار إلى مزيد من المعلومات المحددة في وقت لاحق أر يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. يحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في نداء أر هذا. يمكن فقط أن تظهر الأسماء المحددة في قيمة إندوليست للمكالمة الأولى لقيمة الاسم في قائمة المعادلات في إكليست. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. يمكن فقط أن تظهر الأسماء في إندوليست المكالمة الأولى لقيمة الاسم في فارليست. إذا لم يحدد، افتراضات فارليست إلى إندوليست. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات عند التأخيرات غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي قيمة نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، لاغليست الافتراضية لجميع يتخلف 1 خلال نلاغ. ما ماكرو ساس ماكرو ماك يولد بيانات البرمجة ل بروك نموذج لنماذج المتوسط ​​المتحرك. ماكرو ما هو جزء من برنامج ساسيتس، ولا حاجة إلى خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الخطأ المتوسط ​​المتوسط ​​على أخطاء المعادلة الهيكلية. بناء جملة ماكرو ما هو نفس الماكرو أر باستثناء عدم وجود وسيطة تايب. عندما كنت تستخدم ماك و أر وحدات الماكرو مجتمعة، ماكرو ما يجب اتباع ماكرو أر. تنتج عبارات ساسمل التالية عملية خطأ أرما (1، (1 3)) وحفظها في مجموعة البيانات مادات 2. وتستعمل عبارات بروك موديل التالية لتقدير معلمات هذا النموذج باستعمال أقصى بنية للخطأ المحتمل: وترد في الشكل 18.61 تقديرات المعلمات التي ينتجها هذا المدى. الشكل 18.61 تقديرات من أرما (1، (1 3)) العملية هناك حالتان من بناء الجملة ل ماكرو ما. عندما لا تكون هناك حاجة إلى قيود على عملية ما متجه، بناء جملة ماكرو ما النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما وهو إندوليست الافتراضي. هو ترتيب عملية ما. يحدد المعادلات التي سيتم تطبيق عملية ما. إذا تم إعطاء أكثر من اسم واحد، يتم استخدام تقدير كلس لعملية المتجه. يحدد الفترات الزمنية التي ستضاف فيها مصطلحات ما. يجب أن تكون جميع الفترات المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة في إندوليست. ما ماكرو سينتاكس فور كونستروكتد فيكتور موفينغ-أفيراج يسمح باستخدام بديل ل ما فرض قيود على عملية ما المتجه عن طريق استدعاء ما عدة مرات لتحديد شروط ما المختلفة والتخلف عن المعادلات المختلفة. المكالمة الأولى لديها النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما المتجه. يحدد ترتيب عملية ما. يحدد قائمة المعادلات التي سيتم تطبيق عملية ما. يحدد أن ما ليس لتوليد عملية ما ولكن هو الانتظار للحصول على مزيد من المعلومات المحددة في ما لاحق يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. تحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في هذه الدعوة. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. يحدد قائمة التأخيرات التي ستضاف إليها شروط ما.

Comments

Popular posts from this blog

Cboe - خيار التداول محاكاة

بيانات الخيارات التاريخية لدينا في نهاية المطاف الخيار يقتبس ملف يوفر في الواقع اثنين من لقطات من اقتباس السوق والحجم، واحد في 15:45، خمسة عشر دقيقة قبل إغلاق السوق، وآخر في الساعة 16:00، وقت إغلاق الرسمي للسوق. يتم تضمين بيانات التداول ملخص أيضا في الملفات. أول، آخر، أدنى وأعلى التجارة في كل سلسلة، وكذلك، الحجم الكلي، فواب وفتح الفائدة. لدينا ونقلت الخيار في نهاية اليوم مع ملف كالكس يوفر جميع الحقول في نهاية المطاف الخيار يقتبس ملف بالإضافة إلى السوق تقلب ضمني لكل خيار، وكذلك، اليونان (دلتا، غاما، ثيتا، فيغا ورو ). يتم احتساب التقلبات الضمنية واليونانيين قبالة الطابع الزمني 1545، لأنه يعتبر لقطة أكثر دقة من السيولة في السوق من نهاية السوق اليوم. بيانات مدر هي علامات الاقتباس والحرف التي استولت عليها نظم استرجاع البيانات الداخلية كبويس. يتم تقديم بيانات مدر في المؤشرات الحصرية التالية كبوي: فيكس، سبس ​​و أوكس. ويختلف التاريخ المتاح للبيانات عن طريق الرمز سبس اعتبارا من يناير 1990، أوكس-يناير 1990 و فيكس-مارس 2006. ويمكن أن تتناسب مدر عادة مع عدد قليل من أقراص الفيديو الرقمية، وبالتالي،...